### Features

- 6.0 GHz Wide Frequency Range
- 1Hz Frequency Resolution
- LOx2 Output for Frequency Extension
- +10 dBm High Output Power
- 0.05 dB Power Step-Size
- Baseband:1250 MHz x 16 bit x I/Q

- 500 MHz Wide Modulation Bandwidth
- Excellent ACPR and EVM
- <-80 dBc Low Spur level
- Large on-board waveform memory
- USB 3.0 and LAN Control Interface
- Pre-installed Multi Standard Waveforms

WavesLine UVS602A (Universal Vector Source) delivers industry-lead performance in a compact package with a low-cost combination, including reduced spurious levels, larger waveform memory, wider modulation bandwidth, faster switching speeds, excellent ACPR & EVM, and plus most popular standard waveform generation capabilities in current market such as 5G, 4G/LTE, WCDMA, Wi-Fi and etc. It uses either a standard high-speed USB 3.0 or LAN interface that simplifies connectivity — allowing users to set up and configure their test system with the plug and play feature

Plus, UVS602A supply an extra LOx2 output, and which gives customer a huge advantage to extend their UVS to a higher frequency application with an ultra-low-cost external up-converter.

UVS602A (Universal Vector Source) offers a level of versatility that enables you to set up complex realworld signals — whether you need precise signals to characterize the performance of a design or need to stress a device to its limits. From low-observable radar to high-density communications, testing is more realistic with our precision UVS602A unit and pre-installed standard waveforms.

## **Typical Applications**

- ATE & Lab Testing
- Semiconductor & RF System/Component
- Automotive & IoT
- Medical Device
- Cable & Satellite

1

- Telecommunication
- Consumer Electronics
- Aerospace/Defense
- Material Measurement
- High Education & Research

## **Specifications**

| Davamatav                 | Specification |        |      |      | Condition                                   |
|---------------------------|---------------|--------|------|------|---------------------------------------------|
| rarameter                 | Min.          | Тур.   | Max. | Unit | Condition                                   |
| <b>Base-Band Section</b>  |               |        |      |      |                                             |
| I/Q Band Width            |               |        | 500  | MHz  | 125/250 MHz Option                          |
| Sample Rate               | 20            |        | 625  | MSPS | 156.25/312.5 MSPS Option                    |
| Sample Resolution         |               | 16     |      | Bit  | 16-bit x I/Q Sample Format                  |
| Onboard Memory            |               | 1024   |      | MSa  | 256MSa Option                               |
| Nonvolatile Memory        |               | 256    |      | GB   | Integrated Memory<br>128GB/64GB/32GB Option |
| Waveform Count in Storage |               |        | 128  |      | In Nonvolatile Memory                       |
| System Clock              | 320           | 1228.8 | 1250 | MHz  |                                             |
| System Clock Step Size    |               | 10     |      | Hz   |                                             |

| Davian atau                    | Specification |      |      |                | Condition         |
|--------------------------------|---------------|------|------|----------------|-------------------|
| Parameter                      | Min           | Тур. | Max  | Unit           | Condition         |
| RF Section                     |               |      |      |                |                   |
| CW Frequency Range             | 1             |      | 6000 | MHz            | 250kHz Usable     |
| DE Outeut Douron               | -60           |      | +10  | 1D             | 1-350 MHz CW      |
| KF Output Power                | -60           |      | +10  | аып            | 350-6000 MHz CW   |
| 2xLO Output Power              |               | -5   |      | dBm            | Option            |
| RF Output Power Step Size      |               | 0.05 |      | dB             | 0.02dB Achievable |
| Frequency Resolution           |               | 1    |      | Hz             |                   |
|                                |               | -35  |      |                | +0dBm @ 3800MHz   |
|                                |               | -30  |      |                | +0dBm @ 2700MHz   |
| Harmonics                      |               | -30  |      |                | +0dBm @ 2100MHz   |
|                                |               | -30  |      |                | +0dBm @ 1500MHz   |
|                                |               | -30  |      | dBc            | +0dBm @ 900MHz    |
|                                | -45           |      |      | +0dBm @ 300MHz |                   |
|                                |               | -50  | -50  |                | +0dBm @ 100MHz    |
|                                |               | -40  |      |                | +0dBm @ 10MHz     |
|                                |               | -50  |      |                | +0dBm @ 1MHz      |
| Non-Harmonic Spur <sup>①</sup> |               | <-80 |      | dBc            |                   |

|                                 |   | -120 |      |        | 1K Offset         |
|---------------------------------|---|------|------|--------|-------------------|
| Phase Noise @ 400MHz            |   | -127 |      | dBc/Hz | 100K Offset       |
|                                 |   | -152 |      |        | 1M Offset         |
|                                 |   | -116 |      |        | 1K Offset         |
| Phase Noise @ 800MHz            |   | -121 |      | dBc/Hz | 100K Offset       |
|                                 |   | -146 |      |        | 1M Offset         |
|                                 |   | -103 |      |        | 1K Offset         |
| Phase Noise @ 2400MHz           |   | -112 |      | dBc/Hz | 100K Offset       |
|                                 |   | -137 |      |        | 1M Offset         |
|                                 |   | -101 |      |        | 1K Offset         |
| Phase Noise @ 3500MHz           |   | -105 |      | dBc/Hz | 100K Offset       |
|                                 |   | -131 |      |        | 1M Offset         |
|                                 |   | -99  |      |        | 1K Offset         |
| Phase Noise @ 4900MHz           |   | -103 |      | dBc/Hz | 100K Offset       |
|                                 |   | -129 |      |        | 1M Offset         |
|                                 |   | -100 |      |        | 1K Offset         |
| Phase Noise @ 5800MHz           |   | -102 |      | dBc/Hz | 100K Offset       |
|                                 |   | -131 |      |        | 1M Offset         |
| CW Output Range                 | 1 |      | 6000 | MHz    |                   |
| Modulation Output Range         | 1 |      | 5900 | MHz    |                   |
| Sideband Suppression            |   | -70  |      | dBc    | Typical           |
| Carrier Feed Through            |   | -70  |      | dBc    | Typical           |
| АСР                             |   | -65  |      | dBc    | Adjacent Channel  |
| [20MHz LTE @ 2.7GHz]            |   | -69  |      | dBc    | Alternate Channel |
| АСР                             |   | -61  |      | dBc    | Adjacent Channel  |
| [100M 5G NR @ 3.5GHz]           |   | -64  |      | dBc    | Alternate Channel |
| ACP                             |   | -60  |      | dBc    | Adjacent Channel  |
| [100M 5G NR @ 4.5GHz]           |   | -60  |      | dBc    | Alternate Channel |
| ACP                             |   | -56  |      | dBc    | Adjacent Channel  |
| [2 x 100M 5G NR @ 3.5GHz]       |   | -58  |      | dBc    | Alternate Channel |
| EVM<br>1CC x100M 5G NR @ 3 5GHz |   | 0.50 |      | %      | TDD TM3.1a        |
| EVM<br>2CC x 100M 5G NR @3.5GHz |   | 0.60 |      | %      | TDD TM3.1a        |
| EVM<br>3CC x 100M 5G NR @3.5GHz |   | 0.65 |      | %      | TDD TM3.1a        |

| EVM<br>1CC x100M 5G NR @4.7GHz  | 0.70 | % | TDD TM3.1a |
|---------------------------------|------|---|------------|
| EVM<br>2CC x 100M 5G NR @4.7GHz | 0.75 | % | TDD TM3.1a |
| EVM<br>3CC x 100M 5G NR @4.7GHz | 0.70 | % | TDD TM3.1a |

<sup>①</sup>Fractional Spur Measured at 0dBm Output

| General Specification |                                |  |  |  |
|-----------------------|--------------------------------|--|--|--|
| Front Panel           | Power Switch                   |  |  |  |
|                       | RF Output                      |  |  |  |
| Rear Panel            | DC Input(12V)                  |  |  |  |
|                       | Ext REF Input                  |  |  |  |
|                       | LO x2 Output                   |  |  |  |
|                       | Trig                           |  |  |  |
|                       | USB3.0 Type B                  |  |  |  |
|                       | LAN RJ45 Gigabyte Only         |  |  |  |
| Dimension             | 207mm(W) x 64mm(H) x 280mm (L) |  |  |  |
| Power Dissipation     | 35W                            |  |  |  |

## **Front Panel**



### **Output and Spur Spectrum**



6

## **Typical RF Output Performance (ACPR)**



20MHz LTE RF Output at 2.7GHz



100MHz 5GNR RF Output at 3.5GHz









#### 3 x 100MHz 5GNR RF Output at 3.5GHz

2 x 100MHz 5GNR RF Output at 3.5GHz

7

### **Typical RF Output Performance (EVM)**



1CC x 100MHz 5GNR TDD TM3.1a EVM at 3.5GHz

2CC x100MHz 5GNR TDD TM3.1a EVM at 3.5GHz



3CC x100MHz 5GNR TDD TM3.1a EVM at 3.5GHz



1CC x 100MHz 5GNR TDD TM3.1a EVM at 4.7GHz



2CC x100MHz 5GNR TDD TM3.1a EVM at 4.7GHz

3CC x 100MHz 5GNR TDD TM3.1a EVM at 4.7GHz

### Theory of Operation

### Block Diagram



### Definitions

I/Q Sample: One 16-bit I and One 16-bit Q

Sample Rate: I/Q Sample Output Rate from Baseband Generator

### Baseband

Baseband waveform is an array of I/Q samples. Baseband output I/Q sample rate is variable between 20 and 625 MSPS, that supports I/Q bandwidth up to 500MHz. Each I/Q sample contains 4 byes/32-bit data, 16-bit I and 16-bit Q. Each I or Q sample is a 16-bit integer, values available from -28671 to +28671.

Regarding particular waveform, customer could also adjust I/Q gain, phase as well as offsets to further reduce modulation side band product and LO leakage. Wavesline UVS series sources adjust these values automatically and are sufficiency for most applications, but it is still flexible for customer to make a further fine-tuning for their specified applications. The tuning range is described in the table as below:

|              | Gain I  | Gain Q  | I/Q Phase          | Offset I     | Offset Q     |
|--------------|---------|---------|--------------------|--------------|--------------|
| Code Range   | 0~2047  | 0~2047  | -2047 ~ +2047      | -4095~ +4095 | -4095~ +4095 |
| Actual Range | 0~1.999 | 0~1.999 | $-0.46 \sim +0.46$ | -            | -            |

### Modulation

The UVS series vector sources apply I/Q modulation.

### LOx2 Output

The UVS602A vector source offers additional output at 2 times of LO frequency with typical output power of -5dBm. The frequency range is described in below table.

|   | Modulation | LO Range               | LOx2 Range          |
|---|------------|------------------------|---------------------|
| 1 | ON         | $4.0-6.0~\mathrm{GHz}$ | $8.0 - 12.0 \; GHz$ |

This unique option of UVS602A LOx2 output port offers customer a flexibility to push its UVS source to a higher desired frequency range with a low-cost external up-converter.



Example A, Extend Frequency to 18GHz

Note: Proper Amplifiers, Filters may be required for user applications.

### **Remote Control**

UVS Control Software can be used to control the UVS device. The software is windows and .Net framework based. The UVS device can be connected via USB or LAN interface. For more detailed information, please contact manufacture for technical support.